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A b s t r a c t .  An approach to solving a mathematical program with variational inequality or 
nonlinear complementarity constraints is presented. It consists in a variational re-formulation of 
the optimization criterion and looking for a solution of thus obtained variational inequality among 
the points satisfying the initial variational constraints. 
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algorithm 

1. I n t roduc t i on  

The problem of solving a mathematical program with variational inequalities or 
complementarity conditions as constraints arises quite frequently in the analysis of 
physical and socio-economic systems. According to a remark in the recent paper by 
P.T. Harker and S.-C. Choi [1], the current state-of-the-art for solving such prob- 
lems is heuristic. The latter paper [1] presents an exterior-point penalty method 
based on M.J. Smith's optimization formulation of the finite-dimensional variational 
inequality problem [2]. Recently, we have learned of the paper by J. Outrata [3], 
in which attention is also paid to this type of optimization problems. 

Another approach to solving the above-mentioned problem consists, on the con- 
trary, in a variational re-formulation of the optimization criterion and looking for 
a solution of thus obtained variational inequality among the points satisfying the 
initial variational inequality constraints. In Section 2 of our paper, we examine 
conditions under which the set of the feasible points is non-empty, and compare 
the conditions with those established previously [6]. Section 3 describes a penalty 
function method solving the two-level problem after having reduced it to a single 
variational inequality with a penalty parameter. 

2. Exis tence T h e o r e m  

Let X be a non-empty, closed, convex subset of R ~ and G a continuous mapping 
from X into R ~. Suppose that G is pseudo-monotone with respect to X, i.e. 
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( x - -y )TG(y)  >_ 0 implies ( x - - y )TG(x )  > 0 Vx, y E X,  (1) 

and that there exists a vector x ° E X such that  

G(x °) E int (0+X) *, (2) 

where int(.) denotes the interior of the set. Here 0+X is the recession cone of the 
set X,  i.e. the set of all directions s E R ~ such that  X + s C X; at last, C* is the 
dual cone of C C R '~, i.e. 

C* = {y E R n : yWx >_ 0 ~/x C C} 

Hence, condition (2) implies that the vector G(x °) lies within the interior of the 
dual to the recession cone of the set X.  

Under these assumptions, the following result obtains: 

PROPOSITION 1 The variational inequality problem: to find a vector z E X such 
that 

(x - z )TG(z)  > 0 Vx C X ,  (3) 

has a non-empty, compact, convex solution set. 

P r o o f :  It is well-known [4] that  the pseudo-monotonicity (1) and continuity of 
the mapping G imply convexity of the problem (3) solution set 

Z = {z E X : ( x -  z)TG(z) >_ 0 Vx E X} ,  (4) 

if the latter is non-empty. Now we show the existence of at least one solution to 
this problem. In order to do that,  we use the following fact [5]: if there exists a 
non-empty bounded subset D of X such that  for every x E X \ D  there is a y E D 
with 

(x  - y)Tc(x) > 0, (5) 

then problem (3) has a solution. Moreover, the solution set (4) is bounded because 
Z C D. Now, we construct the set D as follows: 

D =  { x e X :  ( x - - x ° )TG(x  ° ) < 0 } .  (6) 

The set D is clearly non-empty, since it contains the point x °. Now we show that  D 
is bounded, even if X is not so. On the contrary, suppose that  a sequence {x k } C D 
is norm divergent, i.e. ]I xk -x° ] l  ~ +c¢ when k ---+ ¢c. Without  lack of generality, 
assume that  x k ¢ x °, k = 1, 2 , . . . ,  and consider the inequality 

(x  ~ - x 0 ) T G ( x 0 )  
_< 0, k = 1 , 2 , . . . ,  (7)  

IIx~ - x°l l  
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which follows from definition (6) of the set D. Again not affecting generality, accept 
that  the normed sequence (x k -  x°)/ilx a - x0]] converges to a vector s • R n, Iisil-- 
1. It is well-known (cf. [6], Theorem 8.2 ) that s E 0+X. From (7), we deduce the 
limit relationship 

sTG(, °) _< 0. (s) 

Since 0+X # {0} ( as X is unbounded and convex ), we have 0 E fr (0+X) *, 
hence G(x °) ~ 0. Now it is easy to see that  inequality (8) contradicts assumption 
(2). Indeed, the inclusion G(x °) • int (0+X) * implies that  sWG(x °) > 0 for any 
s • 0+X, s ~ 0. The contradiction proves boundedness of the set D, and the 
statement of Proposition 1 therewith. Really, for a given x E X \ D ,  one can pick 
y = x ° • D with the inequality (x - y)TG(y) > 0 taking place. The latter, 
jointly with the pseudo-monotonicity of G, implies the required condition (5). This 
completes the proof. • 

R e m a r k ,  The assertion of Proposition 1 has been obtained earlier [7] under 
the same assumptions except for inclusion (2), which is obviously invariant with 
respect to an arbitrary translation of the set X followed by the corresponding 
transformation of the mapping G. Instead of (2), the authors [7] used another 
assumption G(x °) E int(X*) which is clearly not translation-invariant. 

Now suppose further that  the problem (3) solution set Z contains more than one 
element, and consider the following variational inequality problem: to find a vector 
z* E Z such that 

(z - z*)T F(z  *) >_ 0 for all z E Z. (9) 

Here, the mapping F:  X --+ R ~ is continuous and strictly monotone over X; i.e. 

(x - y)W[F(x) -- F(y)] > 0 Vx, y e X, x • y. 

In this case, the compactness and convexity of the set Z guarantee [5] existence of 
a unique (due to the strict monotonicity of F)  solution z of problem (9). We refer 
to problem (3), (4), (9) as the two-level variational inequality (TLVI). In the next 
section, we present a penalty function algorithm solving the TLVI without explicit 
description of the set Z. 

3. Penalty  U n c t i o n  Method  

Fix a positive parameter ~ and consider the following parametric variational in- 
equality problem: to find a vector xe E X such that 

(x - x,)T[G(x~) + eF(x , ) ]  >__ 0 for all x E X. (10) 

If we assume that the mapping G is monotone over X, i.e. 
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(~ - y ) T [ a ( x )  - a ( y ) ]  > 0 w , y  • x ,  (11) 

and keep intact all the above assumptions regarding G, F and Z ,  then the following 
result obtains: 

PROPOSITION 2 For each sufficiently small value e > O, problem (10) has a unique 
solution xe. Moreover, x~ converge to the solution z* of TLVI (3), (~), (9) when 
~ 0 .  

Proof." Since G is monotone and F is strictly monotone, the mapping 0r = G + e F  
is strictly monotone on X for any e > 0. It is also clear that  if x ° satisfies (2) then 
the following inclusion holds 

~ ( x  °) = G(x °) + eF(x  °) • int (0+X) *, (12) 

if ~ > 0 is small enough. Hence, Proposition 1 implies validity of the first assertion 
of Proposition 2; namely, for every ~ > 0 satisfying (12), variational inequality (10) 
has a unique solution xe . 

From the continuity of F and G, it follows that  each (finite) limit point 2 of 
the generalized sequence Q = {x~} of solutions to problem (10) solves variational 
inequality (3); that  is, • • Z. Now we prove that  the point 2 solves problem (9), 
too. In order to do that,  we use the following relationships valid for any z • Z due 
to (4), (10) and (11): 

(z - x~)W[G(z) - G(x~)] _> 0, (13) 

(z --x~)TG(z) < O, (14) 

(z - x ~ ) T v ( x o )  > - -~(z  - z ~ ) ~ F ( z ~ ) .  (15) 

Subtracting (15) from (14) and using (13), we obtain the following series of inequal- 
ities 

0 < (z - x ~ ) ~ [ a ( z )  - a ( z ~ ) ]  < ~(z  - x ~ ) T F ( x ~ ) .  (16) 

From (16) we have (z - x~)TF(x~) >_ 0 for all ~ > 0 and z E Z. Since F is 
continuous, the following limit relationship holds: (z - 2)TF(2) > 0 for each z E Z, 
which means that 2 solves (9). 

Thus we have proved that  every limit point of the generalized sequence Q solves 
TLVI (3), (4), (9). Hence, Q can have at most one limit point. To complete proving 
Proposition 2, it suffices to establish that the set Q is bounded, and consequently, 
the limit point exists. In order to do that,  consider a norm-divergent sequence 
{x~ } of solutions to parametric problem (10) where ~k ~ 0 as k --+ co. Without 

loss the generality, suppose that  x~ k ¢ x ° for each k, and (x~ - x  °) Itx~ x°lt -~ ~ e R ~, 
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[[s[[ = 1; here z ° is the vector from condition (2). Since IIz~k - z°[] --+ +oo , we 
get s 6 0+X (cf. [6]). As the mappings G and F are monotone, the following 
inequalities take place for all k - 1, 2,...: 

(~,~ - ~°)T[G(~.) + ~ F ( ~ , ) ]  < 0, 

( ~  - ~ ° ) T [ C ( ~ ° )  + ~ F ( z ° ) ]  < 0. (17)  

Dividing inequality (17) by [Iz, k - z°ll we obtain 
( ~  _ ~ 0 ) ~  

I1~ - ~°11 " [ G @ )  + e ~ F ( ~ ° ) ]  < 0, k = 1, 2, ..., (18)  

which implies (as ek --+ 0) the limit inequality sWG(z °) <_ O. Since s ~£ 0, the latter 
inequality contradicts assumption (2). This contradiction demonstrates the set Q 
to be bounded which completes the proof of Proposition 2. • 

4. An  Example  

Let fl C R m, A C_ R n be subsets of finite-dimensional Euclidean spaces and f : 
f l x  A --+ R, g : f2 x A --+ R n be continuous mappings. Consider the following 
mathematical program with variational inequality constraint: 

s.t. 

min f(u,v) ,  (19) 
(u,~)enxh 

a ( ~ ,  v ) T ( ~  -- v) _> 0, W ~ A.  (20)  

If function f is continuously differentiable, then problem (18)-(19) is obviously 
tantamount to TLVI (3), (4), (9) with the gradient mapping f ' (z)  used as F(z) 
and G(u, v) = [O; g(u, v)]; here z = (u, v) E f~ x A. 

As an example, examine the case when 

/(~, ~) = (~ - ~ - 1) 2 + (v - 2)2; g ( ~ ,  ~) = ~ ;  ~ = h = R}~. 

Then it is readily verified that z* = (1; 0) and 

@~(u,v) = [ s (2u-  2 v -  2);uv + e ( - 2 u  + 4 v -  2)]. 

Now solving the variational inequality: find (ue, v~) 6//~_ such that 

+~(u, ,v,)T[(u,v)_(u~,v~)]  > 0  Y(u,v) e R ~ ,  

we obtain 

u ~ = v ~ + l ;  v , = - ~ - e +  +e )  2+4e .  

Clearly (u,, v~) ~ z* when e ~ O. 
Unfortunately, it is not always the case, because the mapping [0; g(u, v)] is not 

usually monotone with respect to (u, v), even i fg(u,  v) is such with respect to v for 
each fixed u. 
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