Solving Two-Level Variational Inequality*

VYACHESLAV V. KALASHNIKOV AND NATALIA I. KALASHNIKOVA c10304@sucemi.bitnet
Department of Experimental Economics, Central Economics and Mathematics Institute (CEMI), Moscow 117418, Russia

Received January 22, 1994; Revised November 15, 1995

Abstract

An approach to solving a mathematical program with variational inequality or nonlinear complementarity constraints is presented. It consists in a variational re-formulation of the optimization criterion and looking for a solution of thus obtained variational inequality among the points satisfying the initial variational constraints.

Keywords: Variational inequality, parametrization, pseudo-monotone mapping, penalty function algorithm

1. Introduction

The problem of solving a mathematical program with variational inequalities or complementarity conditions as constraints arises quite frequently in the analysis of physical and socio-economic systems. According to a remark in the recent paper by P.T. Harker and S.-C. Choi [1], the current state-of-the-art for solving such problems is heuristic. The latter paper [1] presents an exterior-point penalty method based on M.J. Smith's optimization formulation of the finite-dimensional variational inequality problem [2]. Recently, we have learned of the paper by J. Outrata [3], in which attention is also paid to this type of optimization problems.

Another approach to solving the above-mentioned problem consists, on the contrary, in a variational re-formulation of the optimization criterion and looking for a solution of thus obtained variational inequality among the points satisfying the initial variational inequality constraints. In Section 2 of our paper, we examine conditions under which the set of the feasible points is non-empty, and compare the conditions with those established previously [6]. Section 3 describes a penalty function method solving the two-level problem after having reduced it to a single variational inequality with a penalty parameter.

2. Existence Theorem

Let X be a non-empty, closed, convex subset of R^{n} and G a continuous mapping from X into R^{n}. Suppose that G is pseudo-monotone with respect to X, i.e.

[^0]\[

$$
\begin{equation*}
(x-y)^{\mathrm{T}} G(y) \geq 0 \quad \text { implies } \quad(x-y)^{\mathrm{T}} G(x) \geq 0 \quad \forall x, y \in X \tag{1}
\end{equation*}
$$

\]

and that there exists a vector $x^{0} \in X$ such that

$$
\begin{equation*}
G\left(x^{0}\right) \in \operatorname{int}\left(0^{+} X\right)^{*} \tag{2}
\end{equation*}
$$

where $\operatorname{int}(\cdot)$ denotes the interior of the set. Here $0^{+} X$ is the recession cone of the set X, i.e. the set of all directions $s \in R^{n}$ such that $X+s \subset X$; at last, C^{*} is the dual cone of $C \subset R^{n}$, i.e.

$$
C^{*}=\left\{y \in R^{n}: y^{\mathrm{T}} x \geq 0 \quad \forall x \in C\right\}
$$

Hence, condition (2) implies that the vector $G\left(x^{0}\right)$ lies within the interior of the dual to the recession cone of the set X.

Under these assumptions, the following result obtains:
Proposition 1 The variational inequality problem: to find a vector $z \in X$ such that

$$
\begin{equation*}
(x-z)^{\mathrm{T}} G(z) \geq 0 \quad \forall x \in X \tag{3}
\end{equation*}
$$

has a non-empty, compact, convex solution set.
Proof: It is well-known [4] that the pseudo-monotonicity (1) and continuity of the mapping G imply convexity of the problem (3) solution set

$$
\begin{equation*}
Z=\left\{z \in X:(x-z)^{\mathrm{T}} G(z) \geq 0 \quad \forall x \in X\right\} \tag{4}
\end{equation*}
$$

if the latter is non-empty. Now we show the existence of at least one solution to this problem. In order to do that, we use the following fact [5]: if there exists a non-empty bounded subset D of X such that for every $x \in X \backslash D$ there is a $y \in D$ with

$$
\begin{equation*}
(x-y)^{\mathrm{T}} G(x)>0 \tag{5}
\end{equation*}
$$

then problem (3) has a solution. Moreover, the solution set (4) is bounded because $Z \subset D$. Now, we construct the set D as follows:

$$
\begin{equation*}
D=\left\{x \in X:\left(x-x^{0}\right)^{\mathrm{T}} G\left(x^{0}\right) \leq 0\right\} \tag{6}
\end{equation*}
$$

The set D is clearly non-empty, since it contains the point x^{0}. Now we show that D is bounded, even if X is not so. On the contrary, suppose that a sequence $\left\{x^{k}\right\} \subseteq D$ is norm divergent, i.e. $\left\|x^{k}-x^{0}\right\| \rightarrow+\infty$ when $k \rightarrow \infty$. Without lack of generality, assume that $x^{k} \neq x^{0}, k=1,2, \ldots$, and consider the inequality

$$
\begin{equation*}
\frac{\left(x^{k}-x^{0}\right)^{\mathrm{T}} G\left(x^{0}\right)}{\left\|x^{k}-x^{0}\right\|} \leq 0, \quad k=1,2, \ldots \tag{7}
\end{equation*}
$$

which follows from definition (6) of the set D. Again not affecting generality, accept that the normed sequence $\left(x^{k}-x^{0}\right) /\left\|x^{k}-x^{0}\right\|$ converges to a vector $s \in R^{n},\|s\|=$ 1. It is well-known (cf. [6], Theorem 8.2) that $s \in 0^{+} X$. From (7), we deduce the limit relationship

$$
\begin{equation*}
s^{\mathrm{T}} G\left(x^{0}\right) \leq 0 \tag{8}
\end{equation*}
$$

Since $0^{+} X \neq\{0\}$ (as X is unbounded and convex), we have $0 \in \operatorname{fr}\left(0^{+} X\right)^{*}$, hence $G\left(x^{0}\right) \neq 0$. Now it is easy to see that inequality (8) contradicts assumption (2). Indeed, the inclusion $G\left(x^{0}\right) \in$ int $\left(0^{+} X\right)^{*}$ implies that $s^{\mathrm{T}} G\left(x^{0}\right)>0$ for any $s \in 0^{+} X, s \neq 0$. The contradiction proves boundedness of the set D, and the statement of Proposition 1 therewith. Really, for a given $x \in X \backslash D$, one can pick $y=x^{0} \in D$ with the inequality $(x-y)^{\mathrm{T}} G(y)>0$ taking place. The latter, jointly with the pseudo-monotonicity of G, implies the required condition (5). This completes the proof.

Remark. The assertion of Proposition 1 has been obtained earlier [7] under the same assumptions except for inclusion (2), which is obviously invariant with respect to an arbitrary translation of the set X followed by the corresponding transformation of the mapping G. Instead of (2), the authors [7] used another assumption $G\left(x^{0}\right) \in \operatorname{int}\left(X^{*}\right)$ which is clearly not translation-invariant.
Now suppose further that the problem (3) solution set Z contains more than one element, and consider the following variational inequality problem: to find a vector $z^{*} \in Z$ such that

$$
\begin{equation*}
\left(z-z^{*}\right)^{\mathrm{T}} F\left(z^{*}\right) \geq 0 \quad \text { for all } \quad z \in Z \tag{9}
\end{equation*}
$$

Here, the mapping $F: X \rightarrow R^{n}$ is continuous and strictly monotone over X; i.e.

$$
(x-y)^{\mathrm{T}}[F(x)-F(y)]>0 \quad \forall x, y \in X, x \neq y
$$

In this case, the compactness and convexity of the set Z guarantee [5] existence of a unique (due to the strict monotonicity of F) solution z of problem (9). We refer to problem (3), (4), (9) as the two-level variational inequality (TLVI). In the next section, we present a penalty function algorithm solving the TLVI without explicit description of the set Z.

3. Penalty Function Method

Fix a positive parameter ε and consider the following parametric variational inequality problem: to find a vector $x_{\varepsilon} \in X$ such that

$$
\begin{equation*}
\left(x-x_{\varepsilon}\right)^{\mathrm{T}}\left[G\left(x_{\varepsilon}\right)+\varepsilon F\left(x_{\varepsilon}\right)\right] \geq 0 \quad \text { for all } \quad x \in X \tag{10}
\end{equation*}
$$

If we assume that the mapping G is monotone over X, i.e.

$$
\begin{equation*}
(x-y)^{\mathrm{T}}[G(x)-G(y)] \geq 0 \quad \forall x, y \in X \tag{11}
\end{equation*}
$$

and keep intact all the above assumptions regarding G, F and Z, then the following result obtains:

Proposition 2 For each sufficiently small value $\varepsilon>0$, problem (10) has a unique solution x_{ε}. Moreover, x_{ε} converge to the solution z^{*} of TLVI (3), (4), (9) when $\varepsilon \rightarrow 0$.

Proof: Since G is monotone and F is strictly monotone, the mapping $\Phi_{\varepsilon}=G+\varepsilon F$ is strictly monotone on X for any $\varepsilon>0$. It is also clear that if x^{0} satisfies (2) then the following inclusion holds

$$
\begin{equation*}
\Phi_{\varepsilon}\left(x^{0}\right)=G\left(x^{0}\right)+\varepsilon F\left(x^{0}\right) \in \operatorname{int}\left(0^{+} X\right)^{*} \tag{12}
\end{equation*}
$$

if $\varepsilon>0$ is small enough. Hence, Proposition 1 implies validity of the first assertion of Proposition 2; namely, for every $\varepsilon>0$ satisfying (12), variational inequality (10) has a unique solution x_{ε}.
From the continuity of F and G, it follows that each (finite) limit point \bar{x} of the generalized sequence $Q=\left\{x_{\varepsilon}\right\}$ of solutions to problem (10) solves variational inequality (3); that is, $\bar{x} \in Z$. Now we prove that the point \bar{x} solves problem (9), too. In order to do that, we use the following relationships valid for any $z \in Z$ due to (4), (10) and (11):

$$
\begin{align*}
& \left(z-x_{\varepsilon}\right)^{\mathrm{T}}\left[G(z)-G\left(x_{\varepsilon}\right)\right] \geq 0 \tag{13}\\
& \left(z-x_{\varepsilon}\right)^{\mathrm{T}} G(z) \leq 0 \tag{14}\\
& \left(z-x_{\varepsilon}\right)^{\mathrm{T}} G\left(x_{\varepsilon}\right) \geq-\varepsilon\left(z-x_{\varepsilon}\right)^{\mathrm{T}} F\left(x_{\varepsilon}\right) \tag{15}
\end{align*}
$$

Subtracting (15) from (14) and using (13), we obtain the following series of inequalities

$$
\begin{equation*}
0 \leq\left(z-x_{\varepsilon}\right)^{\mathrm{T}}\left[G(z)-G\left(x_{\varepsilon}\right)\right] \leq \varepsilon\left(z-x_{\varepsilon}\right)^{\mathrm{T}} F\left(x_{\varepsilon}\right) \tag{16}
\end{equation*}
$$

From (16) we have $\left(z-x_{\varepsilon}\right)^{\mathrm{T}} F\left(x_{\varepsilon}\right) \geq 0$ for all $\varepsilon>0$ and $z \in Z$. Since F is continuous, the following limit relationship holds: $(z-\bar{x})^{\mathrm{T}} F(\bar{x}) \geq 0$ for each $z \in Z$, which means that \bar{x} solves (9).
Thus we have proved that every limit point of the generalized sequence Q solves TLVI (3), (4), (9). Hence, Q can have at most one limit point. To complete proving Proposition 2, it suffices to establish that the set Q is bounded, and consequently, the limit point exists. In order to do that, consider a norm-divergent sequence $\left\{x_{\varepsilon_{k}}\right\}$ of solutions to parametric problem (10) where $\varepsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$. Without loss the generality, suppose that $x_{\varepsilon_{k}} \neq x^{0}$ for each k, and $\frac{\left(x_{\varepsilon_{k}}-x^{0}\right)}{\left\|x_{\varepsilon_{k}}-x^{0}\right\|} \rightarrow s \in R^{n}$,
$\|s\|=1$; here x^{0} is the vector from condition (2). Since $\left\|x_{\varepsilon_{k}}-x^{0}\right\| \rightarrow+\infty$, we get $s \in 0^{+} X$ (cf. [6]). As the mappings G and F are monotone, the following inequalities take place for all $k=1,2, \ldots$.

$$
\begin{align*}
& \left(x_{\varepsilon_{k}}-x^{0}\right)^{\mathrm{T}}\left[G\left(x_{\varepsilon_{k}}\right)+\varepsilon_{k} F\left(x_{\varepsilon_{k}}\right)\right] \leq 0, \\
& \left(x_{\varepsilon_{k}}-x^{0}\right)^{\mathrm{T}}\left[G\left(x^{0}\right)+\varepsilon_{k} F\left(x^{0}\right)\right]<0 . \tag{17}
\end{align*}
$$

Dividing inequality (17) by $\left\|x_{\varepsilon_{k}}-x^{0}\right\|$ we obtain

$$
\begin{equation*}
\frac{\left(x_{\varepsilon_{k}}-x^{0}\right)^{\mathbf{T}}}{\left\|x_{\varepsilon_{k}}-x^{0}\right\|} \cdot\left[G\left(x^{0}\right)+\varepsilon_{k} F\left(x^{0}\right)\right] \leq 0, \quad k=1,2, \ldots \tag{18}
\end{equation*}
$$

which implies (as $\varepsilon_{k} \rightarrow 0$) the limit inequality $s^{\mathrm{T}} G\left(x^{0}\right) \leq 0$. Since $s \neq 0$, the latter inequality contradicts assumption (2). This contradiction demonstrates the set Q to be bounded which completes the proof of Proposition 2.

4. An Example

Let $\Omega \subseteq R^{m}, \Lambda \subseteq R^{n}$ be subsets of finite-dimensional Euclidean spaces and f : $\Omega \times \Lambda \rightarrow R, g: \Omega \times \Lambda \rightarrow R^{n}$ be continuous mappings. Consider the following mathematical program with variational inequality constraint:

$$
\begin{equation*}
\min _{(u, v) \in \Omega \times \Lambda} f(u, v), \tag{19}
\end{equation*}
$$

s.t.

$$
\begin{equation*}
g(u, v)^{T}(w-v) \geq 0, \quad \forall w \in \Lambda . \tag{20}
\end{equation*}
$$

If function f is continuously differentiable, then problem (18)-(19) is obviously tantamount to TLVI (3), (4), (9) with the gradient mapping $f^{\prime}(z)$ used as $F(z)$ and $G(u, v)=[0 ; g(u, v)] ;$ here $z=(u, v) \in \Omega \times \Lambda$.
As an example, examine the case when

$$
f(u, v)=(u-v-1)^{2}+(v-2)^{2} ; \quad g(u, v)=u v ; \quad \Omega=\Lambda=R_{+}^{1} .
$$

Then it is readily verified that $z^{*}=(1 ; 0)$ and

$$
\Phi_{\varepsilon}(u, v)=[\varepsilon(2 u-2 v-2) ; u v+\varepsilon(-2 u+4 v-2)] .
$$

Now solving the variational inequality: find $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in R_{+}^{2}$ such that

$$
\Phi_{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right)^{T}\left[(u, v)-\left(u_{\varepsilon}, v_{\varepsilon}\right)\right] \geq 0 \quad \forall(u, v) \in R_{+}^{2},
$$

we obtain

$$
u_{\varepsilon}=v_{\varepsilon}+1 ; \quad v_{\varepsilon}=-\frac{1}{2}-\varepsilon+\sqrt{\left(\frac{1}{2}+\varepsilon\right)^{2}+4 \varepsilon}
$$

Clearly $\left(u_{\varepsilon}, v_{\varepsilon}\right) \rightarrow z^{*}$ when $\varepsilon \rightarrow 0$.
Unfortunately, it is not always the case, because the mapping $[0 ; g(u, v)]$ is not usually monotone with respect to (u, v), even if $g(u, v)$ is such with respect to v for each fixed u.

Acknowledgments

The authors would like to thank the referees for their careful review of the manuscrip 1 and for the helpful comments and constructive suggestions that they provided.

References

1. Harker, P.T., Choi S.-C., " A penalty function approach for mathematical programs with variational inequality constraints," Information and Decision Technologies, 17 (1991), pp. 41-50.
2. Smith M.J., "A descent algorithm for solving monotone variational inequalities and monotone complementarity problems," Journal of Optimization Theory and Applications, 44 (1984), pp. 485-496.
3. Outrata J.V., "On optimization problems with variational inequality constraints", SIAM Journal on Optimization, 4 (1994), pp. 340-357.
4. Karamardian S., "An existence theorem for the complementarity problem," Journal of Optimization Theory and Applications, 18 (1976), pp. 445-454.
5. Eaves B.C., "On the basic theorem of complementarity," Mathematical Programming, 1 (1971), pp. 68-75.
6. Rockafellar R.T., "Convex Analysis," Princeton University Press, Princeton, New Jersey, 1970.
7. Harker P.T., Pang J.-S., "Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications," Mathematical Programming, 48 (1990), pp. 161-220.

[^0]: * This research was supported by the Russian Fundamental Research Foundation, Grant No. 93-012-842

