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Abstract. An approach to solving a mathematical program with variational inequality or
nonlinear complementarity constraints is presented. It consists in a variational re-formulation of
the optimization criterion and looking for a solution of thus obtained variational inequality among
the points satisfying the initial variational constraints.
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1. Introduction

The problem of solving a mathematical program with variational inequalities or
complementarity conditions as constraints arises quite frequently in the analysis of
physical and socio-economic systems. According to a remark in the recent paper by
P.T. Harker and S.-C. Choi [1], the current state-of-the-art for solving such prob-
lems is heuristic. The latter paper [1] presents an exterior-point penalty method
based on M.J. Smith’s optimization formulation of the finite-dimensional variational
inequality problem [2]. Recently, we have learned of the paper by J. Qutrata [3],
in which attention is also paid to this type of optimization problems.

Another approach to solving the above-mentioned problem consists, on the con-
trary, in a variational re-formulation of the optimization criterion and looking for
a solution of thus obtained variational inequality among the points satisfying the
initial variational inequality constraints. In Section 2 of our paper, we examine
conditions under which the set of the feasible points is non-empty, and compare
the conditions with those established previously [6]. Section 3 describes a penalty
function method solving the two-level problem after having reduced it to a single
variational inequality with a penalty parameter.

2. Existence Theorem

Let X be a non-empty, closed, convex subset of R™ and G a continuous mapping
from X into R™. Suppose that G is pseudo-monotone with respect to X, i.e.
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(z-y)TG(y) 20 implies (z-y)*G(z) >0 Vz,y€ X, (1)
and that there exists a vector 2° € X such that
G(z®) € int (07 X)*, (2)

where int(-) denotes the interior of the set. Here 0T X is the recession cone of the
set X, i.e. the set of all directions s € R™ such that X + s C X; at last, C* is the
dual cone of C C R™, i.e.

C*={yeR":y"2>0 VzeC}

Hence, condition (2) implies that the vector G(z°) lies within the interior of the
dual to the recession cone of the set X.
Under these assumptions, the following result obtains:

PROPOSITION 1 The variational inequality problem: to find a vector z € X such
that

(x—2)TG(2) 20 Vz € X, (3)

has a non-empty, compact, convex solution set.

Proof: It is well-known [4] that the pseudo-monotonicity (1) and continuity of
the mapping G imply convexity of the problem (3) solution set

Z={z€X:(z-2)TG(z)>0 Vze X}, (4)

if the latter is non-empty. Now we show the existence of at least one solution to
this problem. In order to do that, we use the following fact [5]: if there exists a
non-empty bounded subset D of X such that for every z € X\D thereisay € D
with

(—9)G(z) >0, ()

then problem (3) has a solution. Moreover, the solution set (4) is bounded because
Z C D. Now, we construct the set D as follows:

D={zeX: (z-2°)TG(=" <0} (6)

The set D is clearly non-empty, since it contains the point z°. Now we show that D
is bounded, even if X is not so. On the contrary, suppose that a sequence {z*} C D
is norm divergent, i.e. ||z*¥ —z%| — 400 when k — co. Without lack of generality,
assume that z¥ # z°, k= 1,2,..., and consider the inequality

(1:" _ zO)TG(zo) _
T2 = 20 <0, k=1,2,..., (7)
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which follows from definition (6) of the set D. Again not affecting generality, accept
that the normed sequence (z* —2°)/||z* — 2°|| converges to a vector s € R", ||s|| =
1. It is well-known (cf. [6], Theorem 8.2 ) that s € 0t X. From (7), we deduce the
limit relationship

sTG(z%) < 0. (8)

Since 0t X # {0} ( as X is unbounded and convex ), we have 0 € fr (0*X)*,
hence G(z°) # 0. Now it is easy to see that inequality (8) contradicts assumption
(2). Indeed, the inclusion G(z°) € int (0t X)* implies that sTG(2°) > 0 for any
s € 0tX,s # 0. The contradiction proves boundedness of the set D, and the
statement of Proposition 1 therewith. Really, for a given z € X\ D, one can pick
y = 2° € D with the inequality (z — y)TG(y) > 0 taking place. The latter,
jointly with the pseudo-monotonicity of G, implies the required condition (5). This
completes the proof. ]

Remark. The assertion of Proposition 1 has been obtained earlier [7] under
the same assumptions except for inclusion (2), which is obviously invariant with
respect to an arbitrary translation of the set X followed by the corresponding
transformation of the mapping G. Instead of (2), the authors [7] used another
assumption G(z%) € int(X*) which is clearly not translation-invariant.

Now suppose further that the problem (3) solution set Z contains more than one
element, and consider the following variational inequality problem: to find a vector
z* € Z such that

(z=2TF(z*)>0 forall z€2Z. (9)
Here, the mapping F: X — R" is continuous and strictly monotone over X; i.e.
(z-9)T[F(z)-FWI>0 VzyeXz#y.

In this case, the compactness and convexity of the set Z guarantee [5] existence of
a unique (due to the strict monotonicity of F') solution z of problem (9). We refer
to problem (3), (4), (9) as the two-level variational inequality (TLVI). In the next
section, we present a penalty function algorithm solving the TLVI without explicit
description of the set Z.

3. Penalty Function Method

Fix a positive parameter ¢ and consider the following parametric variational in-
equality problem: to find a vector z, € X such that

(z —z:)T[G(ze) +€F(z)] >0 forall zeX. (10)

If we assume that the mapping G is monotone over X, i.e.
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(¢ -9)"G@) -Gy 20 VryeX, (11)

and keep intact all the above assumptions regarding G, F and Z , then the following
result obtains:

PROPOSITION 2 For each sufficiently small value € > 0, problem (10) has a unique
solution .. Moreover, x. converge to the solution z* of TLVI (8), (4), (9) when
e — 0.

Proof: Since G is monotone and F' is strictly monotone, the mapping ®. = G+¢F
is strictly monotone on X for any € > 0. It is also clear that if z° satisfies (2) then
the following inclusion holds

®.(z°) = G(2°) + eF(2°) € int (0 X)*, (12)

if € > 0 is small enough. Hence, Proposition 1 implies validity of the first assertion
of Proposition 2; namely, for every ¢ > 0 satisfying (12), variational inequality (10)
has a unique solution z. .

From the continuity of F and G, it follows that each (finite) limit point % of
the generalized sequence @ = {z.} of solutions to problem (10) solves variational
inequality (3); that is, Z € Z. Now we prove that the point Z solves problem (9),
too. In order to do that, we use the following relationships valid for any z € Z due
to (4), (10) and (11):

(2 —2:)T[G(2) = G(g:)] 2 0, (13)
(z —2)TG(2) <0, (14)
(z —2)TG(ze) > —e(z — 2.) T F(e). (15)

Subtracting (15) from (14) and using (13), we obtain the following series of inequal-
ities

0< (z—.)T[G(2) — G(z.)] < ez — z.) T F(x.). (16)

From (16) we have (2 — z.)TF(z.) > O for all ¢ > 0 and z € Z. Since F is
continuous, the following limit relationship holds: (z —z)TF(z) > 0 for each 2 € Z,
which means that Z solves (9).

Thus we have proved that every limit point of the generalized sequence () solves
TLVI (3), (4), (9). Hence, @ can have at most one limit point. To complete proving
Proposition 2, it suffices to establish that the set @ is bounded, and consequently,
the limit point exists. In order to do that, consider a norm-divergent sequence
{z¢, } of solutions to parametric problem (10) where ¢, — 0 as kK — oo. Without

.0
loss the generality, suppose that z., # z° for each k, and l(lzs i I)l — s € R,
Te, —
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|Is]l = 1; here z° is the vector from condition (2). Since ||z, — 2°]| = +o0 , we
get s € 0% X (cf. [6]). As the mappings G and F are monotone, the following
inequalities take place for all k = 1,2,...

(zex — 2°)T[G(zes) + &6 F (2e4)] <0,

(e, — 2°)T[G(2°) + ex F(2°)] < 0. (17)
Dividing inequality (17) by ||z, — z°|| we obtain
_ .O\T
M—ﬁ)— [G(2°) + ex F(e2)] <0, k=1,2,.., (18)
e, = 271

which implies (as &5 — 0) the limit inequality sTG(z°) < 0. Since s # 0, the latter
inequality contradicts assumption (2). This contradiction demonstrates the set @
to be bounded which completes the proof of Proposition 2. [ |

4. An Example

Let @ C R™, A C R” be subsets of finite-dimensional Euclidean spaces and f :
QxA >R, g:QxA— R be continuous mappings. Consider the following
mathematical program with variational inequality constraint:

e (%) (19)
s.t.
g(u,v)T (w—v) >0, Yw € A. (20)

If function f is continuously differentiable, then problem (18)-(19) is obviously
tantamount to TLVI (3), (4), (9) with the gradient mapping f'(z) used as F(z)
and G(u,v) = [0; g(u, v)]; here 2z = (u,v) € Q x A.
As an example, examine the case when
fluvy=(@m-v-12+(v-2?% g(u,v)=uy; Q=A=R.
Then it is readily verified that z* = (1;0) and
@ (u,v) = [6(2u — 2v — 2); uv + &(—2u + 4v — 2)].
Now solving the variational inequality: find (u.,v.) € R% such that

Qe(us,vc)T[(u,v) - (ug,vg)] >0 VY(u,v)€ Rﬁ_,

1 /
Ue = Ve + 1; v£=—§—6+ (%+6)2+4E-

Clearly (uc,ve) = 2z* whene — 0.
Unfortunately, it is not always the case, because the mapping [0; g(u, v)] is not

usually monotone with respect to (u, v), even if g(u, v) is such with respect to v for
each fixed u.

we obtain
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